
AL/OE-TR-1997-0118

UNITED STATES AIR FORCE ARMSTRONG LABORATORY

Compliance Sampling of the Type "1" Classified Waste Incinerator Hickam AFB, Hawaii

Kyle W. Blasch, Captain, USAF, BSC

19970918 107

September 1997

DTIC QUALITY INSPECTED 3

Approved for public release; distribution is unlimited.

Occupational and Environmental Health Directorate Bioenvironmental Engineering Division 2402 E Drive Brooks AFB, TX 78235-5114

NOTICES

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: DTIC, 8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060-6218

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161-2103.

KYLE W. BLASCH, Capt, USAF, BSC Consultant, Air Quality Function

LARRY T. KIMM, Major, USAF, BSC Deputy Chief, Bioenvironmental Engineering Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suita 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503

	3 1204, Artington, VA 22202-4302, and to the Office of Manager	nent and Budget, Paperwork Reduction Project (070	4-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES	S COVERED
A TITLE AND OURTER	September 1997		l, 1-15 August 1996
4. TITLE AND SUBTITLE	Type "1" Classified Waste Incine		i. FUNDING NUMBERS
Compliance Sampling of The 1	ype i Classified waste incine	rator Hickam AFB, Hi	
6. AUTHOR(S)			
Blasch, Kyle W., Capt			
•			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		B. PERFORMING ORGANIZATION
Armstrong Laboratory			REPORT NUMBER
Occupational and Environment			AL/OE-TR-1997-0118
Bioenvironmental Engineering	Division		AL/OL-1R-1997-0116
2402 E Drive			
Brooks Air Force Base Texas 7 9. Sponsoring/Monitoring Agency N	/8235-5114		A CRONCORING/MONTORING
5. SPUNSORING/MONITURING AGENCT N	Muic(2) Mun Mnne22(E2)	[1	O. SPONSORING/MONITORING AGENCY REPORT NUMBER
=			
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION AVAILABILITY STATE		[1	26. DISTRIBUTION CODE
Approved for public release; di	stribution is unimited		
13. ABSTRACT (Maximum 200 words)			
Compliance emissions testing for	or total particulate matter was co	nducted on a Type "1" in	cinerator located at Building 83366,
Hickam Air Force Base, Hawa	ii. The incinerator is currently u	sed to destroy classified v	waste consisting of paper documents
and cardboard containers. Sam	pling was performed from 1 Au	gust 1996 through15 Augu	st 1996 using Environmental
Protection Agency Methods 1-5	contained in 40 CFR 60 Appen	dix A. Results indicate th	at the Type "1" incinerator is in ful
compliance with all applicable	particulate matter emission stand	ards.	
14. SUBJECT TERMS	Course Compliant Folding		15. NUMBER OF PAGES
	Source Sampling Emissions Tes	•	50
Type "1" Incinerator Particul	late Matter Air Pollution Hicka	m Afb	16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF
OF REPORT	OF THIS PAGE	OF ABSTRACT	ABSTRACT
UL	UL	UL	UL

TABLE OF CONTENTS

	_	age
INTRODUCTION		1
SITE AND INCINERATOR DESCRIPTION		1
APPLICABLE STANDARDS AND GUIDELINES		2
METHODS AND MATERIALS	• •	3
QUALITY ASSURANCE AND QUALITY CONTROL		9
RESULTS		10
DISCUSSION		12
REFERENCES	• •	13
APPENDIXES:		
A Personnel Information		
B Request Letter		
C Calibration Data		
D HP 41 Program Printouts		
E Field Data		. 29

DTIC QUALITY INSPECTED 8

List of Figures

Fig.		Page
1	Type "1" Incinerator	2
2	Front End Loading	3
3	Schematic of Type "1" Incinerator	4
4	Locations of Exhaust Stack Sampling Ports	5
5	Schematic of Orsat Analyzer	6
6	Orsat Analysis	7
7	Schematic of EPA Method 5 Schematic	8
8	EPA Method 5 Sampling Train	9

List of Tables

Table <u>No.</u>		Page
1.	Total Mass of Particulate Matter Collected	11
2.	Total Mass of Particulate Matter Emitted	11
3.	Incinerator Compliance Results	12

COMPLIANCE SAMPLING OF THE TYPE "1" CLASSIFIED WASTE INCINERATOR HICKAM AFB, HAWAII

INTRODUCTION

On 1-15 Aug 96, compliance emissions testing was conducted on a type "1" (Bldg. 83366) classified waste incinerator at Hickam AFB, Hawaii (Figure 1). A type "1" incinerator is defined as a solid waste incinerator which burns type "1" waste: a mixture of combustible waste such as paper, cardboard cartons, wood scrap, and foliage. The Hickam AFB incinerator burns primarily classified paper and cardboard waste.

The current particulate matter emissions requirement by the State of Hawaii for type "1" incinerators is 4.0 lb PM per ton of waste burned. This emission limit is less than the emission factor contained in AP-42 of 4.7 lb PM/ton for multiple chamber incinerators. The Environmental Flight (15 CES/CEV) at Hickam AFB requested the assistance of Armstrong Laboratory's Air Quality Function (AL/OEBQ) in quantifying the pollutant emissions from the incinerator to determine compliance status (see Appendices A&B). The emissions sampling results were used to determine whether the incinerator meets the 4.0lb/ton limit. Pollutants monitored during the survey included total particulate matter (PM), oxygen (O₂), and carbon monoxide (CO). Environmental Protection Agency (EPA) Method 5 contained in 40 CFR 60 Appendix A was used to sample for total particulate matter.

Site and Incinerator Description

The Hickam AFB type "1" incinerator is an Advanced Combustion Model No. CA 750, Serial No. 5933. This incinerator consists of both a primary (lower) and secondary (upper) chamber. Loading of the waste is accomplished by one entry port on the front of the incinerator (Figure 2 and 3). The incinerator uses multiple diesel-fired burners for each chamber. The incinerator is currently utilized to burn type "0" waste and has a design (rated) capacity of 750 lb/hr.

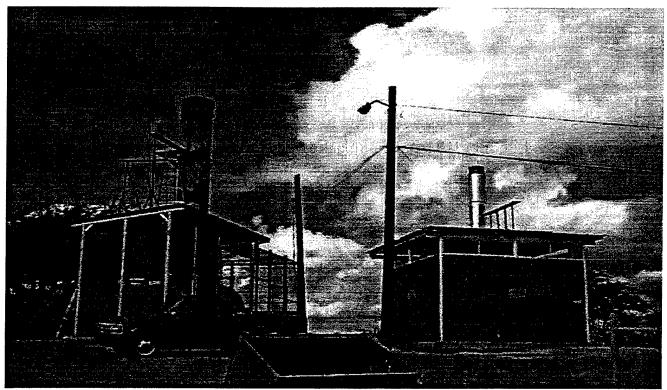


Figure 1. Type "1" Incinerator (left) and Silver Reclamation Incinerator (right) at Hickam AFB, Hawaii.

The type "1" incinerator is scheduled to burn two charges per week. Each charge weighs 250 lb on average. The batch is allowed to burn until all refuse is reduced to ashes. Most of the batch is burned within the first hour and the remaining portion of the waste smolders until it no longer burns. Typically the smoldering lasts approximately 24 hours.

The type "1" incinerator is equipped with a screen at the top of the stack to control large particulates (see Figure 1 and 3). It is not equipped with further control devices.

Applicable Standards and Guidelines

According to the State of Hawaii regulations, Title II Chapter 60.12, the TPM emission standard is $4.0~\rm lb/ton$ (2 g/kg) from a type "1" incinerator. In order to determine compliance with this standard the incinerator needed to be sampled or an appropriate emission factor determined. The EPA's emission factor document, AP-42, was consulted for emission factors. Unfortunately, the EPA AP-42¹ TPM emission factor for the type "1" incinerator is 4.7

lb/ton. This exceeds the allowable limit for the State of Hawaii 4.0 lb/ton limit. As a result emissions testing was conducted to determine the total particulate matter emission rate.

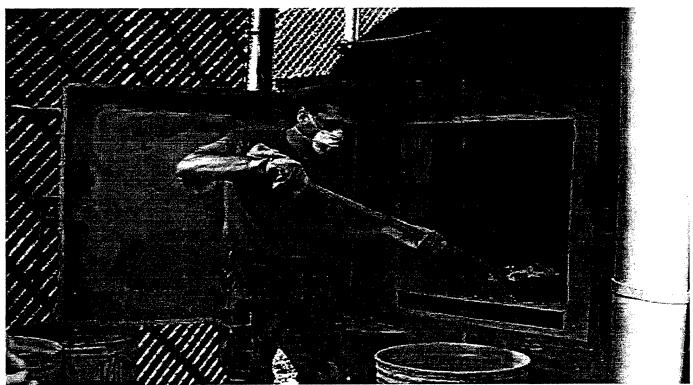


Figure 2. Front end loading of Type "1" incinerator.

METHODS AND MATERIALS

Particulate sampling and analysis were conducted in accordance with Environmental Protection Agency (EPA) Methods 1 through 5. These methods are found in Appendix A to Title 40, Code of Federal Regulations, Part 60^3 . As indicated previously, each burn can last up to 24-36 hours in length, however most of the waste is consumed in the first hour. Sample runs were started at the beginning of each burn and assumed to collect most of the particulate matter mass released.

The incinerator exhaust stack is circular with an inside diameter of 36 inches (see Figure 4). The Type "1" incinerator stack is 226 inches tall. Each stack has 2 sampling port holes. The sampling ports are on the same horizontal plane, 90 degrees apart. The sampling ports for the Type "1" incinerator are located 54 inches upstream from the stack exit and 172 inches downstream from the last stack disturbance (Figure 4). EPA Method 1 requires the sampling port holes to be located a minimum of 0.5

duct diameters upstream and 2.0 duct diameters downstream of the nearest flow disturbances. The ports are 1.5 duct diameters upstream (the stack exit) and 4.8 duct diameters downstream (incinerator exit).

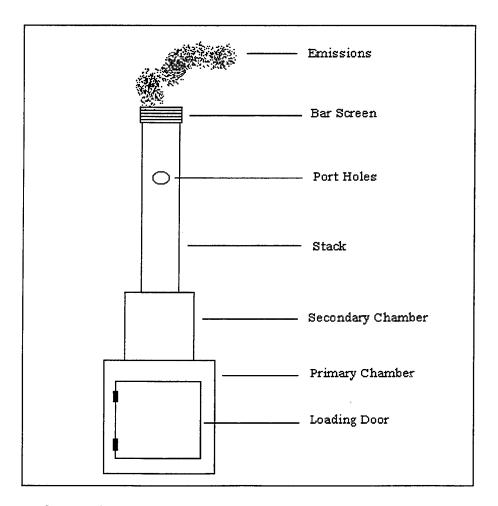
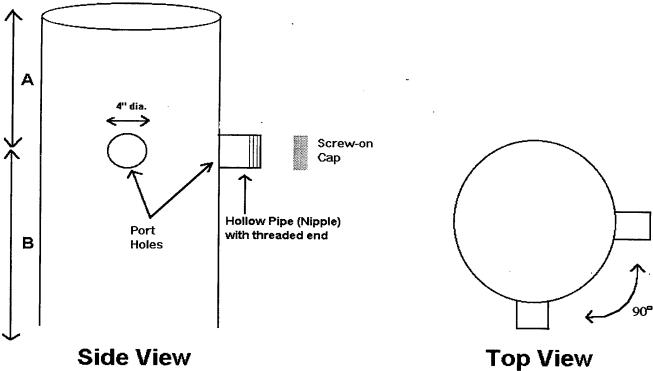



Figure 3. Schematic of Type "1" incinerator. (Not to Scale)

Notes

- 1. A = Distance from center of port holes to the nearest flow disturbance downstream. If possible, this distance should be ≥ 2 stack diameters. At a minimum, this distance must be ≥ 0.5 stack diameters. (For the Type "1" Incinerator A = 54".)
- 2. B = Distance from center of port holes to the nearest flow disturbance upstream. If possible, this distance should be ≥ 8 stack diameters. (For the Type "1" Incinerator B = 172".)

Figure 4. Locations of Exhaust Stack Sampling Ports

The EPA's Hewlett-Packard 41 (HP 41) "METH 1" calculator program was used to determine locations and numbers of traverse points⁴. A total of 24 traverse points (12 for each port hole) were used to collect a representative sample from the Type "1" incinerator.

Prior to the first sampling run, the average degree of cyclonic flow was determined by using a Type-S pitot tube and measuring the stack gas rotational angle at each point along the center traverse. Flow conditions are considered acceptable when the arithmetic mean average of the rotational angles is 20 degrees or less. Rotational angle measurements showed the Type "1" incinerator's air flow to be within acceptable limits. A' preliminary velocity pressure traverse, using the same Type-S pitot tube, was also accomplished at this time.

A grab sample for Orsat analysis (measures O_2 and CO_2 for stack gas molecular weight determination) was taken during each sampling run (see Figures 5 & 6)

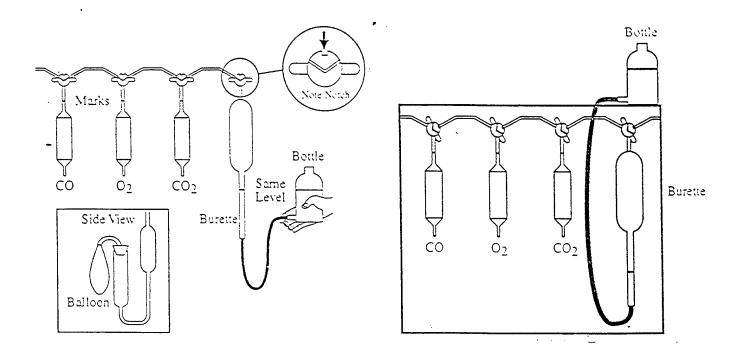


Figure 5. Schematic of Orsat Analyzer

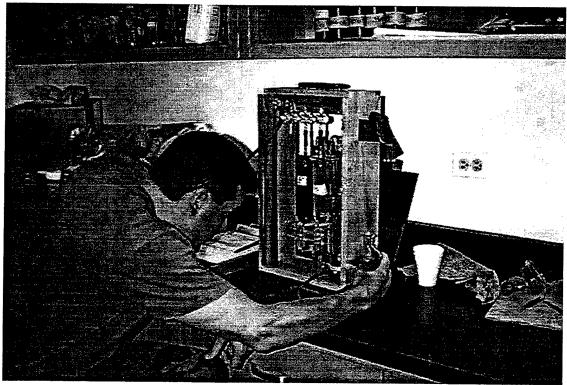


Figure 6. Orsat Analysis

For each representative sample, 3 sampling runs were conducted and the results averaged to determine the final emission value. All sampling runs were 60 minutes in duration.

The particulate matter content, moisture, velocity, and temperature of the exhaust stack gas were determined using an EPA Method 5 sampling train. The train consisted of a button-hook probe nozzle, heated stainless steel probe, heated glass-fiber filter, impingers, and a pumping/metering device (meter box). A schematic of the Method 5 sampling train is shown in Figure 7 and a picture of a Method 5 sampling train in the field is shown in Figure 8. Calibration data for the Method 5 equipment are found in Appendix C. Calibrations were performed in accordance with EPA's Quality Assurance Handbook. 5 Stack gas velocity pressure was measured at the nozzle tip using a Type S pitot tube connected to a 10-inch inclined-vertical manometer and the procedures described in EPA Method 2. The probe nozzle was sized (with a micrometer) prior to sampling using EPA Method 5 criteria. Type K thermocouples were used to measure stack gas and sampling train temperatures. The probe liner was heated to minimize moisture condensation. The heated filter was used to filter out particulates prior to the impingers. The impinger train consisted of four glass impingers in series. The impinger train was placed in an ice bath which enabled the stack gas moisture to condense into the impingers. The first, third, and fourth impingers were of modified Greenburg-Smith design while the second impinger was a

standard Greenburg-Smith type. The first and second impingers each contained 100 milliliters (ml) of distilled water, the third impinger was empty, and the fourth impinger contained 200 grams (g) of silica gel.

The pumping and metering system was used to control and monitor the sample gas flow rate. The velocity and flow rate of the stack gas were calculated using the EPA's HP 41 "METH 2" Calculator Program. The percent moisture of the exhaust stack gas was calculated using the EPA's Hewlett-Packard 41 (HP 41) "METH 4" Calculator Program. Printouts from all the HP 41 programs run for this survey are found in Appendix D.

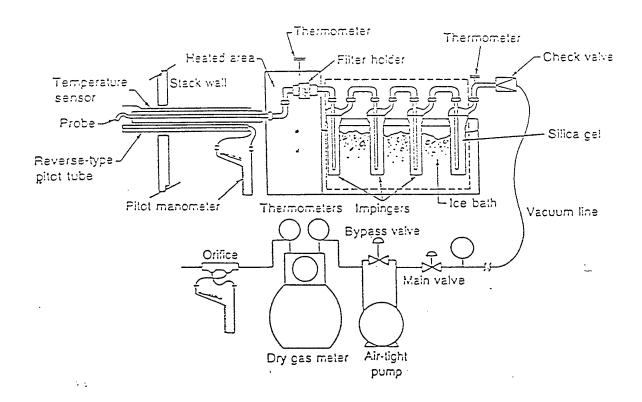


Figure 7.0 Schematic of EPA Method 5

Figure 8. EPA Method 5 sampling train

Front half particulate matter mass (material collected on sampling train surfaces up to and including the filter) was determined for compliance purposes according to the procedures specified in EPA Method 5. Field data from particulate sampling are presented in Appendix E. Emission calculations were accomplished using the "Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators" developed by the EPA Office of Air Quality Planning and Standards.

Quality Assurance/ Quality Control

Copies of all supporting calibration and quality assurance date are in the appendices.

Pre-survey

Prior to the survey, several steps were taken to calibrate equipment and prepare the sample filters. The meter box contains a dry gas meter that was calibrated using another dry gas meter. Although a dry gas meter is considered a secondary standard it can be used in lieu of a primary standard provided it is calibrated by a transfer standard whose calibration is traceable to a primary standard (i.e., wet test method). The purpose of this calibration is to ensure the volume collected as indicated by the meterbox is a measure of the true volume collected. Sample filters were pre-

dried in a dessicator for twenty-four hours and weighed to the nearest 0.1 milligram. They were placed back in the dessicator and re-weighed 6 hours later. If the weights were within 0.5 milligrams the average weight was recorded on a resealable plastic bag and the filter placed in it. Pitot tubes used to measure velocity were also calibrated within standards, correction factors determined, and recorded.

Survey

During the survey several steps were taken to ensure sample accuracy and precision. When the sampling train is assembled a leak test of the sample train and pitot tube was conducted before and after each sample run. Additionally, the nozzle selected for a particular run was measured using a micrometer and the diameter recorded on a calibration sheet.

Post-Survey

Upon completion of the sample run, the filter was removed and placed in aluminum foil which in-turn was labeled and placed in the resealable plastic bag. Post weighing was performed at Armstrong Laboratory using the same procedures indicated in EPA Method 5. The stainless steel probe was rinsed and brushed into a sample container at the on-site laboratory with acetone. collects any particulate matter that may have adhered to the inside of the probe. The sample jars were labeled with run number, level of rinse (used to determine if a jar leaked during transport), and finally shipped to Armstrong Laboratory. Armstrong Laboratory the acetone rinse was transferred to preweighed beakers. The volume of acetone was recorded and the beakers were placed in a controlled ventilation hood. After the acetone had evaporated the beakers were weighed in the same manner as the filters. The acetone residual weight was calculated and normalized to a QA/QC probe rinse. The impinger contents were measured using a graduated cylinder and electronic balance.

RESULTS

Sample results for particulate matter are shown in Table 1. Total particulate matter is a combination of PM collected on the filter and PM collected from rinsing the EPA Method 5 train components.

Table 1. Total Mass of Particulate Matter Collected

Test Run #	Filter PM Collected (1b)	Rinse PM Collected (1b)	Total Particulate Matter (lb)	
TYPE"1" - 1	2.62E-04	1.84E-04	4.46E-04	
TYPE"1" - 2	N/A	N/A	N/A	
TYPE"1" - 3	4.80E-05	1.72E-04	2.28E-04	
TYPE"1" - 4	8.16E-05	1.80E-04	2.62E-04	

Table 2 shows the calculated particulate matter emissions rates. The amount of particulate matter captured in the EPA Method 5 train is adjusted to reflect the total particulate emissions from the stack. The sampling train's dry gas meter records the amount of exhaust gas collected through the train. At the same time, pitot tube readings from within the stack determine the stack gas velocity. By knowing the stack gas velocity, stack area and time sampled it is possible to determine the total gas exhausted through the stack. Total particulate matter is then determined by multiplying the particulate matter collected through the train by the ratio of gas collected through the train to the total gas exhausted through the stack. The total particulate matter value is then divided by the amount of waste incinerated to determine the emission rate.

Table 2. Total Mass of Particulate Matter Emitted

Test Run #	Total PM Emitted (lb)	Amount of Waste Incinerated (ton)	Total PM Emitted Per Waste Incinerated (lb/ton)	
TYPE"1" - 1	4.46E-04	0.284	3.65	
TYPE"1" - 2	N/A		N/A	
TYPE"1" - 3	2.28E-04	0.147	3.61	
TYPE"1" - 4	2.62E-04	0.132	4.61	

Table 3 shows the average emissions and compliance standard.

Table 3. Incinerator Compliance Results

Test Run #	Total PM Emitted (lb/ton)	Total PM Standard (lb/ton)	Compliance Status
TYPE"1" - 1	3.80		
TYPE"1" - 2	N/A		
TYPE"1" - 3	3.48		
TYPE"1" - 4	4.39		
Average	3.89	4.0	Yes

DISCUSSION

Results from the particulate matter emissions testing for the Type "1" Incinerator are below State of Hawaii Permit limits. Operators of the incinerator should ensure that the temperature and retention time in the secondary chamber is sufficient to maintain complete combustion.

Results for the second run are not shown because the wrong input data was used in the HP41 calculator program. The values obtained were not considered valid. A fourth run was administered to obtain three complete and valid data sets.

Visual inspections of the stack exhausts showed a decrease in particulate matter released after the first forty minutes. This is consistent with the test methodology previously stated. Inspections of the incinerated material after a 2-4 hours showed very little remaining combustion and after 12 hours there were no visible cinders.

REFERENCES

- 1. Compilation of Air Pollution Emission Factors, Volume 1: Stationary Point and Area Sources, Fifth Edition, AP-42, Office of Air Quality Planning and Standards (OAQPS), U.S. Environmental Protection Agency (EPA), Research Triangle Park (RTP), North Carolina (NC), January 1995.
- 2. Hawaii Regulations, Title 11, Chapter 60.1, "Air Pollution Control"
- 3. Office of the Federal Register National Archives and Records Service, Code of Federal Regulations, Title 40, Part 60, Washington DC, July 1994.
- 4. U.S. Environmental Protection Agency, Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators, EPA-340/1-85-018, Research Triangle Park NC, May 1987
- 5. U.S. Environmental Protection Agency, Quality Assurance
 Handbook for Air Pollution Measurement Systems: Volume III.
 Stationary Sources Specific Methods, EPA/600/4-77/-07b,
 Research Triangle Park NC, December 1984

APPENDIX A

Personnel Information

Armstrong Laboratory Air Quality Test Team

Capt Kyle W. Blasch, Air Quality Consultant, Project Officer Capt Thomas C. Moore, Air Quality Consultant Capt Greg P. Durand, Air Quality Consultant

AL/OEBQ 2402 E Drive Brooks AFB TX 78235-5114 Phone: DSN 240-3305 Comm (210) 536-3305

Hickam AFB On-Site Representatives

Mr. Melvin Muraoka 15 CES/CEV 75 H Street Hickam AFB, HI 96853-5233 Phone: DSN 449 - 8998 Comm (808) 449-8998 APPENDIX B

DEPARTMENT OF THE AIR FORCE PACIFIC AIR FORCES

12 0 MAY 1996

MEMORANDUM FOR AL/OEBQ

2402 E. DRIVE, BUILDING 175W BROOKS AFB TX 78235-5114

FROM: 15 CES/CEV:

75 H Street

Hickam AFB HI 96853-5233

SUBJECT: Air Sampling Work - Title V

- 1. Armstrong Laboratory (AL) is scheduled to conduct National Emission Standard for Hazardous Air Pollutants (NESHAP) work on Hickam AFB during the Jul/Aug timeframe. During this period, we would like AL to conduct source sampling on two incinerators located on Hickam AFB.
- 2. During our annual air emission update/Title V permit review, we identified a possible compliance issue with our incinerators. EPA AP-42 air emission factors indicate the following emissions for PM-10 (Particulate Matter less than 10 micron diameter).

Type Incinerator	Emission Rate
Type "O" waste incinerator	5.7 lb/ton
Silver reclamination incinerator	4.7 lb/ton

- 3. The State of Hawaii limitation for all incinerators is 4.0 lb/ton. Source testing for PM-10 needs to be conducted on these two incinerators to determine compliance status.
- 4. Please contact Mr. Melvin Muraoka at (808) 449-8998 to discuss any items.

MICHAEL F. MCGHEE, P.E. Chief, Environmental Flight 15th Civil Engineer Squadron

APPENDIX C

METER BOX CALIBRATION DATA AND CALCULATION FORM							
English Units							
Meter Box Number:	4	Date:	12-Jul-96				
Barometric Pressure, Pb, in.Hg:	29.41						

	,		Preliminary	lest Calit	ration				
Orifice	Gas Vo	lume		Temperat	ures		Time	Yi	ΔH@;
Manometer	Wet Test	Dry Gas	Wet Test	Dry (Gas Meter				
Setting	Meter	Meter	Meter	Inlet	Outlet	Avg			
(∆H)	(V _w)	(V_d)	(t _w)	(t _{di})	(t _{do})	(t_d)	(Θ)		i
in. H ₂ 0	ft ³	ft ³	°F	°F	°F	°F	min		in. H₂O
0.50	5	4.985	74	77	76	76.5	12.35	1.006447	1.74759
1.00	5	4.99	76	82	78	80	8.5	1.006964	1.65728
1.50	10	10.43	76	86	80	83	14.31	0.967665	1.75171
2.00	10	10.145	75	90	83	86.5	12.74	1.001886	1.83252
3.00	10	10.035	76	93	84	88.5	10.32	1.01216	1.80383
4.00	10	9.99	75	96	86	91	8.93	1.02073	1.78600
	•						Average	1.002642	1.76316

$$Y_{i} = \frac{V_{w} P_{b} (t_{d} + 460)}{V_{d} (P_{b} + \frac{\Delta H}{13.6}) (t_{w} + 460)}$$

$$\Delta H@_i = \frac{0.0317}{P_b(t_d + 460)} \left[\frac{(t_w + 460)\Theta}{V_w} \right]^2$$

141 dh

Date:			Post Test C	Calibration					
Orifice	Gas Volume			Temperat	ures		Time	Yi	∆H@;
Manometer	Wet Test	Dry Gas	Wet Test	Dry (Gas Meter				
Setting	Meter	Meter	Meter	Inlet	Outlet	Avg			
(ΔH)	(V _w)	(V_d)	(t _w)	(t _{di})	(t _{do})	(t_d)	(Θ)		
in. H₂0	ft ³	ft ³	°F	°F	°F	°F	min		in. H ₂ O
2.50	10	10.265	68	74	73	73.5	12.17	0.978218	2.085541
2.50	10	10.29	70	80	74	77	12.31	0.978536	2.135983
2.50	10	10.17	72	85	77	81	12.24	0.993708	2.111996
							Average	0.983487	2.111173

Run	Pre test Calibration Factor	Post Test Calibration Factor	Change	% Change
#1	1.002642	0.98349	0.019155	1.910453

Operator: Kyle Blasch

Signature:____

Quality Assurance Handbook M5-2.3A

			Nozzle Calibration Data Form		
Location:	00000	AFB		Data	
Location.	BRODICS	ЛРВ		Date.	25 Avg 95

Nozzle Identification		Nozzle Diameter ^a				ΔD^{b}		D _{avg} c		
Number	D ₁		D ₂		D ₃	1		_		
Units	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.
1		0,747		0.747		6,747		0		0,747
2										
3		0.623		0.622		0.622		1001		0.622
4										
5										
6										
7										
8										
9										
10										
11										
										-

Where:

^c D_{avg} = Average of D_1 , D_2 , and D_3

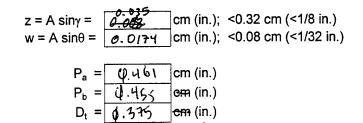
Operator:	Kyle	Blasch	Signature:	161	silv
	,		-	Y	

Quality Assurance Handbook M5-2.6

^a D_{1,2,3} = Three different nozzle diameters; Each diameter should be measured to the nearest 0.025mm (0.001 in.)

^b ΔD = Maximum difference between any two diameters; $\Delta D \leq$ 0.10 mm (0.004 in.)

TYPE S PITOT TUBE INSPECTION DATA FORM


Pitot Tube Assembly Level? Pitot Tube Openings Damaged? $\alpha_{1} = \frac{1}{2} {}^{\circ}_{0} \ (<10^{\circ})$ $\beta_{1} = \frac{1}{2} {}^{\circ}_{0} \ (<5^{\circ})$	yesyes (explain below) $\alpha_2 = \frac{2.5}{\beta_2}$	no no ° (<10°) ° (<5°)	
$ \gamma = 0.5 \\ \theta = 0.2 \\ A = 0.88 \\ cm (in.) $			
	<0.32 cm (<1/8 in.) <0.08 cm (<1/32 in.)		
Comments:			
Calibration Required? ✓ v∈	es no		
Calibration Required?	esno		

Operator: KYLE BLASCH Signature: Signature: 31 Sc1 96

Quality Assurance Handbook M2-1.7

TYPE S PITOT TUBE INSPECTION DATA FORM

IYP	ESPITOT TUBE INSPECTION DATA FORM
Pitot Tube Assembly Level? Pitot Tube Openings Damaged?	yes (explain below) no
$\alpha_1 = 3^{\circ}$ (<10°) $\beta_1 = 3^{\circ}$ (<5°)	$\alpha_2 = \frac{5}{3}$ ° (<10°) $\beta_2 = \frac{5}{3}$ ° (<5°)
$ \gamma = $	

Comments:	461 + , 455 = A= , 916	
	, ዓሪነ · ዓንና	
	.916	
	-	

Calibration Required? _____yes ____nc

Operator: Ky/c U/s, h Signature: 1/4/1004

Quality Assurance Handbook M2-1.7

APPENDIX D

XROM "METH

DIA IN	CHES?		DIA INC	CHES?	
NIPPLE	36,0000 INCH ?	RUN		17,0000	
POINTS	5,2500	RUN	NIPPLE	INCH ? 0,0000	
POINT	12,0000	RUN	POINTS	ONE TRV? 10,0000	F
POINT	•	6,3	POINT	1,	
	2,	7,7	POINT	2,	·
POINT	3,	9,5	POINT	3,	
POINT	4,	11,6	POINT	4,	
POINT	5,	14,3	POINT	5,	
POINT	6,		POINT	6,	
POINT	7,	18,1	POINT	7,	i
POINT	8,	28,4		•	1
POINT	9,	32,3	POINT	8,	1 -
POINT		34,9	POINT	9,	j
	10,	37,0	POINT	• •	
BOTHT	, ·	•			•

STACK DIA INCH? 36,0000 NO TRAV PTS.? 12,0000 BAR PRESS? 30,0200 STATIC IN HOH? .0900	RUN RUN RUN RUN	PS = 8, 620, 1ELTA P 2, .01 TACK TEMP? 650, PS = 8,	RUN RUN RUI	30,02 BAR PRESS ?09 STK TEMP ?	ZLE" RUN RUN RUN RUN
8,0000 PITOT CP ? .8400 % CO2 ? .8,0000 % OXYGEN ? .8,0000 % CO ? .8,0000 MOL WT OTHER ? .9,0000	RUN RUN RUN RUN RUN	PELTA P 3, .01 STACK TEMP? 730, PS = 8, ELTA P 4, .01 TACK TEMP? 850, PS = 9,	RUN RU RU RU		
		PELTA P 5, .01 TACK TEMP? 950,	RU RU		
		DELTA P 6, .01 STACK TEMP? 1.083, PS = 10,	Ribe 2		
		ELTA P 7, .01 TACK TEMP? 1.125, PS = 10,	RL RL		
		ELTA P 8, .01 TACK TEMP? 1.125, PS = 10,	R. R:		
		ELTA P 9, .01 .TACK TEMP? 1.120, PS = 10,	R! R⊎		
· •		NELTA P 10, .01 STACK TEMP? 1.116, PS = 10,		·	
		DELTA P 11, ,01 STACK TEMP? 1.090, FPS = 10,	R. P.		
•		DELTA P 12, .01 STACK TEMP? 1.078, FPS = 10,	RUN RUN	-	
		AVE FPS = 9, AVE FPM = 552, AVE DELTA P = 0,0	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

1,0030 DELTA H?	RUN:	1,0030	HICKAM AFB TYPE O INCIN FOUR METER BOX Y? DELTA H? 1,0030 BAR PRESS ? 1,2300 METER VOL ? 35,4340 MTR TEMP F? 20000 MOTHER GRS REMOVED BEFORE DRY GAS METER ? STATIC HOH IN ? STACK TEMP. 102,5000
IMP. % HOH = 7,3 % HOH=7,3 % CO2? % OXYGEN? 21,0000 % CO ? MOL WT OTHER? 0,0000 MWd =28,85 MW WET=28,06	RU RU RU RU	10,7300 % CO ? 0,0000 : MOL WT OTHER? 0,0000 MWd =29,75 MW WET=28,46	IMP. % HOH = 12,4 % HOH=12,4 % CO2? % OXYGEN? % CO ? MOL WT OTHER? 0,0000 ; MWd =29,59 MW WET=28,16
SQRT PSTS ? TIME MIN ? 60,0000 NOZZLE DIA ? TYPO STK DIA INCH ? STK PRES ABS = 30,000 * VOL MTR STD = 52,70 STK PRES ABS = 7,28 VOL HOH GAS = 7,28 MOL DRY GAS = 78,93 MOL WT DRY = 28,06 VELOCITY FPS = 13,000 STACK ACEM = 5.528 * STACK DSCFM = 5.528	R'	SQRT PSTS ? TIME MIN ? 60,0000 R NOZZLE DIA ? 7470 R STK DIA INCH ? 36,0000 R * VOL MTR STD = 30,992 STK PRES ABS = 30,06 VOL HOH GAS = 3,84 '. MOISTURE = 11,01 MOL DRY GAS = 0,890 '. NITROGEN = 81,00 MOL WT DRY = 29,75 MOL WT WET = 28,46 VELOCITY FPS = 9,97 STACK AREA = 7,07 STACK ACFM = 4,226, * STACK DSCFM = 1,201, 99,9	TIME MIN ? 3,8200 F. NOZZLE DIA ? 7470 F. STK DIA INCH ?

APPENDIX E

Table E.1 Hickam AFB Incinerator Survey Filter Weights

	l 1st	and	2rd	/th	5th
Run #	Weight 29Aug/0900	Weight 29Aug/1500	Weight 30Aug/0745	Weight 30Aug/1500	Weight 3Sep/0730
	(g)	(g)	(g)	(g)	(g)
T1I - 01	0.4072	0.4057	0.4069	0.4051	0.4048
T1I - 03	0.3122	0.3114	0.3121	0.3114	0.3112
T1I - 04	0.3272	0.3265	0.3269	0.3262	0.3258

Table E.2 Particulate Matter From Filter Collection

	Filter	Filter	Particulate	Total PM
Run #	Initial Weight	Final Weight	Matter Weight	For Each Run
	(g)	(g)	(g)	(g)
T1I - 01	0.2864	0.4050	0.119	0.119
T1I - 03	0.2895	0.3113	0.0218	0.0218
T1I - 04	0.2889	0.3260	0.0371	0.0371

Table E.3 Particulate Matter From Acetone Rinse

Run #	Initial Weight 29Aug/1600 (g)	1 st Weight 5Sep/0745 (g)	2 nd Weight 5Sep/1600 (g)	Final Weight (g)	Acetone Rinse Weight (g)
Blank	162.9687	162.9682	162.9680	162.9681	-0.0006
T1I - 01	165.8259	165.9099	165.9095	165.9097	0.0838
T1I - 03	162.7079	162.7862	162.7862	162.7862	0.0783
T1I - 04	166.1486	166.2308	166.2304	166.2306	0.0820

Table E.4 Type "1" Incinerator Stack Sampling Results

Table 1.4 Type I Included	COT D COCK			
	Run 1	Run 3	Run 4	Average
Test Date	6 Aug 96	9 Aug 96	12 Aug 96	
Test Start Time (Military)	1045-1145	1000-1100	1400-1500	
Station Pressure ("Hg)	30.01	30.07	30.02	
Stack Static Pressure ("H ₂ O)	-0.09	-0.09	-0.09	
Average Stack Gas Temperature (° F)	781	1201	961	
Stack Gas Moisture Content (%H ₂ O)	7.3	11.0	12.4	
Stack Gas Oxygen Content (%O2)	21	10.73	11.0	
Stack Gas Carbon Dioxide Content (%CO ₂)	.070	8.27	7.2	
Stack Gas Velocity (ft/sec)	13.03	9.97	9.44	
Actual Stack Gas Flow Rate (ACFM)	. 5528	4226	4002	
Corrected Flow Rate (DSCFM)	2187	1201	1307	
Total Gas Volume (DSCF)	54.266	32.065	35.434	
Percent Isokinetic	93.47	99.93	102.20	,
Waste Incinerated (ton)	0.284	0.147	0.132	
PM Collected (lb)	4.46E-04	2.28E-04	2.62E-04	
PM Emission Rate (lb/ton)	3.80	3.48	4.39	3.89

Units

"Hg = inches of mercury

"H₂O = inches of water

° F = degrees Fahrenheit

 $%H_2O$ = percent moisture

 $%O_2$ = percent oxygen

ft/sec = feet per second

ACFM = actual cubic feet per minute

DSCFM = dry standard cubic feet per minute

lb/hr = pounds per hour

Note: $lb/hr = (ppm) (MW) (DSCFM) (1.55 \times 10^{-7})$

State of Hawaii Permit Limits

Particulate Matter:

4.0 lb/ton

		urvey Data Shee	t			
		e Calculation				
Base: Hickam AF	=B		Date:	2 Ava		
Base: Itickam AF Source: Type "1" In	cinerator		Time:	10:00		
Inside Stack Diameter (Inc		36 in				
Stack Static Pressure (In I	H₂O):	-0.09				
Station Pressure (In. Hg):		30.02				
						•
Sampling Data:						
Traverse Point Number	Stack Temperature	Velocity Head	(∆p) ^{0.5}	Dwell Time	Cyclonic	Abs
	(°F)	(∆p In. H₂O)		(min)	Flow (°)	Flow (°)
1	620	0.01			0	-
2	650	0.01			0	
3	730	0.01			0	
4	850	0.01			5	
5	940	0.01			0	
6	1083	0.01			0	
7	1/25	0.01			0	
8	1125	o. Di			0	
9	1120	0-01			0	
10	1116	0.01			0	
11	1090	0.01			0	
12	1078	0.01			0	
13						
14						
15						
16 17						
17						
19						
20						
21						+
22						
23						
24						
Average =	961	0.01		· · · · · · · · · · · · · · · · · · ·	0.42	
		<u> </u>		, , ,		

32

Signature:_

Operator: GREG Durad

Imping	ger and Orsat Ana	ysis Data Sheet		
Base: HICKAM AFB		Date: 6 Avc 9	î (c	
	ν Λ ;	Date: 6 Aug 9		
	IMPINGER	ANAL VSIS		
I. ITEM		INITIAL VOLUME	VOLUME	WATER
	(ml)	(ml)	(mľ	
	(,,,,,		· · · · · · · · · · · · · · · · · · ·	
IMPINGER 1 (H₂0)	153	100	53	<u> </u>
IMPINGER 2 (H₂O) Standard Tip	115	100	15	
IMPINGER 3 (H₂0)	P	0	φ	
IMPINGER 4 (Silica Gel)	220	200 gm	20	
	Total Volume of	Water Collected	88	
II.	MIGHTY	ORSAT	A_V4 (1.5)	
Scratch Space: 0.0	1 0 0 5 14.4 0 7.0	6.73 0.	CBG + 6.7≥ ← 3	×2.114
CO_2 = Reading A; O_2 = Reading B-A; CO_2 = Reading C	-B; N ₂ =(100% - %CO ₂ -	%O ₂ - %CO ₂);		
DMW = 0.440(%CO2) + 0.320(%O2) + 0.280(%CO + %				
ITEM ANALYSIS	ANALYSIS 2	ANALYSIS 3	AVERAGE	COMMENT
Reading A $\mathcal{O}_{\varepsilon} \mathcal{O}$	0.2	00		
Reading B 21.0	21.2	21.0		
Reading C -				
VOL% CO ₂ 6.3	6. 2	A ==		
	21.0	21,0	21.0	
VOL% O ₂ 21:0	7/10	21.0	anu .	
VOL% N ₂ 79. 0	78.0	79.c		
Dry Molecular Weight २५ ४५	28.872	28.84	Z8,651	
Fuel Factor: F ₀ = (20.9 - %O ₂) / %CO ₂ =		F _o (Natural G	as): 1.600 - 1.836	3
Operator: Kylc Black		Signature:	byl M	

168.3.36

						168.536					
						114.270	٤	,	495	56A 169	
				Pa	Particulate Sam	Sampling Data Sheet	heet		0	7	
Date: 6 Ava	96 61		Nozzle Diameter:			in Pre Pitot Check:		VES	Sci	Schematic of Stack	성
±			Pitot Coefficient,	ن.	4.84	Post Pitot Check:		<i>Y</i>			
ä	¥ 0	4000	Meter Box Y _i :	'/	003	Pre Train Check:	,	(at 15 "Hg)			
Run Number:			Meter Box ∆H@:	1	763	Post Train Check:	heck: 40	(at 22, "Hg)			
Station Pressure:	Ire: Jo.o.		"Hg Meter Box #:	7			Assumptions				
Static Pressure:	1.0		"H ₂ O Probe #:	6Ft		%H ₂ O: 7.5	5 MW _D :	29.24			
Traverse	Sampling	Dry Gas	Gas Mete		Stack	Velocity	Orifice Diff	Probe	Sample	Impinger	Vacuum
Point	Time	. Meter Vol	<u> </u>	Out	Temp, T _s	Head, ∆p	Press, ΔH	Temp	Box Temp	Outlet Temp	Pressure
Number	(min)	(ft³)	(°F)	(PF)	(°F)	("H ₂ O)	("H ₂ O)	2 (°F)	3 (°F)	ψ (°F)	("Hg)
	14	14.14									
		025%//									
\	205 1203		. 8	Æ	230	.03	25%	050	238	4.5	۶
ių		>	18	23	180	50.	58%	248	235	25	ی
67		•	187	27	523	2500	50.2	250	34.0	32	//
×		,	450	380	325	Seo-	28%	249	3%	34,5	م
لم		>	88	၁ွ	345	3/201	7.83	05E	OHE	2,5	2/
7		7	ان ان ان	Z	181	,035	6.71	201	238	56	75
^		>	<i>65</i> ℃/	36	260	.035	22.9	150		2.5	16
C		<i>></i>	0.6	3.8	374	200.	6.62			9	17
6	7	`\	. 30	18	583	0000	3,74			1 /9	73 .
0/		`	<i>\</i>	B	32/	560.	1,9%	15C	_	/9	/*/
11		,	55	A.B	1000	,015	1.62			63	//
73		7	<i>36.</i> /	88	1/0/	2100	1.60		200	29	0
				8		8				6	27
7		>		22	1901	300	0,0	367		60	N.
2		>	900	200	2011	000,	2.03			50	×
í / /		>		0,0	2	500-	0,70		80	73	,a,
7/		7	8	12	15/	500	3.46		250	6%	7
\ \		>	8	0)	1111	000-	118		みして	64	
Ą	-	`>	do Je	2	1178	000	287	_	J.S.	64	7
Q/	-	\frac{1}{2}	8	6	1/65	000-		25	200	S.	B
R		>	9	2	1331	,030	887	_	256	Ś	Ş
7		``	do	ર	11/6	oco.	203		247	1	8
なみ		>	40 d	K	5//	2000	2.03	23%	عكو	64	B
, , ,		•	00 S	ર્ચ	1003	0000	2.07		348	•	<i>3</i> 2
×		168.536	8	ই	894	000	2.36			99	B
3as Vol	11	こそのとし	Avg T _m =	<i>'</i> 6'	Avg T _s =	182.	Avg $\Delta H =$	6	Avg (PsTs)0.5	365	5
Nov 95									10	Ç	

Signature:

Meter Box Operator:

lmp	inger and Orsat Ana	lysis Data Sheet		
Base: HICKAM AFB		Date: 8 Avg		
	4 2	Time: 13:30		
	IMDINGED	ANALYSIS		
I. ITEM		INITIAL VOLUME	VOLUME	WATER
	(ml)	(ml)	(ml	ļ
	V/	(,		7
IMPINGER 1 (H₂0)	183	100	83	
iMPINGER 2 (H₂O) Standard T	ip 60	100	-40	no visible movement dies reac
IMPINGER 3 (H₂0)	0	0	0	
IMPINGER 4 (Silica Gel)	206	200 gm	6	
	Total Volume of	Water Collected	49	
II.	MIGHTY	ORSAT		
Scratch Space: 6.4 6.4 6.4 6.7 7.0 7.0 17.2 19.3 15.8 19.6 18.3 18.3 19.9	7.07.0 16.4 18.9 17.0 19.0			
2.816 + 3.808 + 22.876 3.	0402 2.804 - 22.	709 20807	+ 7.84+ 72.	1800
CO ₂ = Reading A; O ₂ = Reading B-A; CO ₂ = Reading			<u> </u>	<u> </u>
DMW = 0.440(%CO2) + 0.320(%O2) + 0.280(%CO +	- %N2)			
ITEM ANALYSIS	ANALYSIS 2	ANALYSIS 3	AVERAGE	COMMENT
Reading A 6.4	7.0	7.0	6.8	
Reading B /Ê·3	18:9	19.0		
Reading C				
VOL% CO2 6.H	7.0	7.0	6.8	
VOL% O ₂ /1, 9	17.9	12.0	11.9373	
VOL% CO -		-		
VOL% N ₂ 81,7	81.1	81.0		
Dry Molecular Weight 29.500	29,5967	24.6007	29.5658	
Fuel Factor: F _o = (20.9 - %O ₂) / %CO ₂ =		F _o (Natural G	Gas): 1.600 - 1.836	
Operator: Kyle Llasch		Signature:	flad	

_					E E	Particulate Sam	Sampling Data Sheet	neer				
Date:	<i>&</i>	A, 96		Nozzle Diameter:		0,747 in	in Pre Pitot Check:	eck: طدۍ	*	Sci	Schematic of Stack	성
Base:	HICKAM	AM AFB	()	Pitot Coefficient, C	ient, C _p :	4.84	Post Pitot Check:	heck:				
Source ID:			ININ	Meter Box Y _i :		1.003	Pre Train Check:	2	(at 15 "Hg)	T-		
Run Number:		031		Meter Box /	∆H@:	1.763	Post Train Check:	1	(at € "Hg)	-		
Station	Station Pressure:			"Hg Meter Box #;	٠.ن	3		Assumptions		1		
Static F	Static Pressure:	,	0,09 "H20	"H ₂ O Probe #:		4.4.4	7 %H ₂ O:	S MWb:	30.0			
Traverse	\vdash	Sampling	Dry Gas	Gas Meter Temp	r Temp, T _m	Stack	i 🗮	Orifice Diff	ł		Impinger	Vacuum
Point		Time	Meter Vol	<i>ه</i>	.7 Out	Temp, Ts	Head, ∆p	Press, ∆H	d Temp	Box Temp	Outlet Temp	Pressure
Number		(min)	(ft³)	(P)	(°F)	(P)	("H ₂ O)	("H ₂ O)	(°F)		7 (°F)	("Hg)
			317572					[1				
7	H	2.5min		83	20	194	5/0:	2.57	348	HAC	67	5
18		11		80	06	280	000'	2.70	250	84C	1.5	8
E		1/		16,	06	345	5/01	1.87	252	250	63	ક
t		"		93	8	388	2/0	127	350	348	63	S
4		//		63	90	606	.030	2.33	5.50	9.HE	79	S
P				23	06	399	,020		555	₩33	83	7
7		" "		46	06	8001	5/00	603	359	232	<u>ي</u>	Ŋ
G		"/		46	70	299	0/00	0.69	360	236	59	4
36		"		46	20	9801	5/0'	VI	360	238	67	5
70		//		44	16,	8/00/	5101	600	260	342	19	7
1	`	//		56	18	1066	5/00	28%	262	344	19	۵
(3)		"		Z	8	1077	0/0"	0.65	267	346	2.5	5
			25,350									
7	8	J.Simin	236.450	8	6)	985°	010-	630	244	338	5/	4
rs	`	`		23	6	1120	٠٥/٢	285	345	233	حيح	5
מ	/	,		8	26	1333	5/0-	0.8%	2550	250	53	6
4	1			7	82	1350	5/0,	0,00	350	242	53	9
4	//	,		46	9.2	1278	5/00	28.0	250	340	S	Y
9	~	_		75.	92	1295	0.015	0.86	54C	4/2	22	5
7	5			200	5	1306	1015	286	250	343	56	જ
d	`			27	દ્ય	1310	010.	257	244	348	2.5	4
•	`	Š		27	2	1323	0/0-	0.57	242	248	5.6	<i>.</i> 4
10	1			88	È	887	0/0	0.50	6he	246	29	5
1		?		80.00	44	1296	.000	0,53	257	24C	85	5
á	\			83	24	1274	0/0:	a58	250	946	25	ک
•			25/109									
Total G	Total Gas Vol =	3%	.037	Avg T _m =	113	Avg $T_s = \frac{1}{2}$	83	Avg $\Delta H =$	1.19	Avg (P _s T _s) ^{0.5}	= 4.3300	3
Nov 95	20 4	35.350	Meter Box	Meter Box Operator:	SKS 1	Devond		r	Signature:	18/	03	
	8	17.00	10,72								,	
* * * * * * * * * * * * * * * * * * * *			54.0×7									

	Impinge	er and Orsat Anal	ysis Data Sheet	· · · · · · · · · · · · · · · · · · ·	
Base:	Hick and		Date: 9 M	L. üh	
	HICKam AFB		Time:	ly üb	
1	<u> </u>		•		
l.		IMPINGER			
ITEM		FINAL VOLUME	INITIAL VOLUME	VOLUME	WATER
		(ml)	(ml)	(mľ)
IMPINGER 1 (H₂	20)	202	100	loz	
IMPINGER 2 (H₂(O) Standard Tip	10 72	100	-28	
IMPINGER 3 (H₂	⊵0)	0	0	۵	
IMPINGER 4 (Sil	ica Gel)	207.5	200 gm	7.5	
		Total Volume of \	Water Collected	81.5	
II.		MIGHTY	ORSAT		
Scratch Space:					
8.2 8.2 19.0 19.0	9.0 9.0 18.6 -3.6	6:67.67.6			
3.6+ 3.456 +2	D.16 291	+ 3.022 + 22.	792 2349	+ 3 726 + 22.5	7.6 °C
CO _o = Beading A: O _o = Beading	g B-A: CO ₂ = Reading C-E	3: N ₂ =(100% - %CO ₂ -	%O ₂ - %CO ₂):	7.748	
CO_2 = Reading A; O_2 = Reading B-A; CO_2 = Reading C-B; N_2 =(100% - % CO_2 - % CO_2 - % CO_2); DMW = 0.440(% CO_2) + 0.320(% CO_2) + 0.280(% CO_2 + % N_2)					
				,	•
ITEM	ANALYSIS 1	ANALYSIS 2	ANALYSIS 3	AVERAGE	COMMENT
Reading A	8.2	7:0	7.6	8.2667	
Reading B	19.0	18.6	19.4	19.00	
Reading C					
				<u> </u>	
VOL% CO₂	162 B.2	9,0	7.6	8.27	
VOL% O ₂	10.8	9.6	11.8	10-73	
VOL% CO		-	-		<u> </u>
VOL% N ₂	\$1.0	81.4	80.6	29 2497	
Dry Molecular Weight	39.736	29.524	29-688	29,7493	l
Fuel Factor: F _o = (20.9	- %O ₂) / %CO ₂ =		F _o (Natural C	Gas): 1.600 - 1.836	3
Operator:	y le Blasch	_	Signature:	y ue	

					Particulate Sampling Data Sheet	npling Data S	sheet				
	1006 46		Nozzle Diameter:	neter:	0. 747 ir	in Pre Pitot Check:	leck: Ves	١	Sc	Schematic of Stack	ack
Base:	FICKAM	F.B.	Pitot Coefficient,	ient, C _p :	Ø, 84	Post Pitot Check:	heck: 1/65		-		
Source ID:	TYPE " 0"	INCIN	Meter Box Y _i :		1,003	Pre Train Check:	17	(at 15 "Hg)	ī		
Run Number:	OF: TACKE		Meter Box ∆H@:	H (9)	1.763	Post Train Check:		at	100		
Station Pressure:		30.07 "Hg	"Hg Meter Box #:		4		Assumptions	1			
Static Pressure:		\$0.09 "H20	"H ₂ O Probe #:		644	%H2O: 7,					
Traverse	Ŝ	Dry Gas	Gas Meter Tem	p, T	Stack	Ę	Orific	Probe	Sample	Impinger	Vacuum
Point	Time	. Meter Vol	드	Out	Temp, T _s	Head, Δp	Press, ∆H	Temp	Box Temp	Outlet Temp	Pressure
Number	(min)	(ft³)	(°F)	(%F)	(°F)	("H ₂ O)	("H ₂ O)	(P)	(°F)	(°F)	("Hg)
		\$15.5%									
IA	3.5%		28	28	430	100	1.79	250	250	19	1.5
18	,		88	23	560	100	551	253	348	85	000
(ve)	2		88	28	789	10.	1.25	150	253	57	200
J.	"		88	3	985	10.	60%	256	250	20	20
ζ,	`		90	do do	69//	10.	0.97	36	25%	65	9.0
١	\		6	Poss	4001	10.	hor	38	47	12	20
			3	89	1225	100	0,90	363	25-7	んご	برھ
9	:		72	80	(I)	10'		960	253	23	3.5
38			55	86	13/2	10.	0.60	252	253	5	3.0
6)			53	88	1314	10,	0.89	252	253	5	0%
>		1	20	88	. 1	10.	0.89	253	249	3.5	80
7	2			88	1319	100	000	450	348	5.5	30
		SC. 5%.									
18	1,5	368797	8.62	86 86	134980	100 400	0.841.19	35433	1se Ste	85.45	3.5 3.5
7			53	à	2	101	100%	240	20	53	3,5
5			44	92	1285	101	0.9	343	ダング	8	ふろ
7	>		95	3	135%	10.	0.80	243	316	žS	3.0
h	``		95	8	1372	10.	0.37	242	252	SS	0.5
ا و			56	(S)	136	0.01	0.68	1/10	756	23	3.0
	``		76		1394	6	0.86	243	248	م	50
	, ;		77		1380	10'	0.8	THE	349	53	30
7				35	▼	100	0.86	277	348	60	のな
9	,				1405	10.	0.96	240	251	60	0%
			700	77	10%	10.	0.86	349	25.5	60	0.5
			29	7	1398	10.	0.86	251	558	0,5	3.0
		264.531									
Total Gas Vol =		30.065	Avg T _m =	S	Avg T _s =	150%	Avg AH =	2600	Avg (PsTs)0.5	P30 H =	
Nov 95	なからない	Meter Box Operator:	Operator:	613	[cusual			Signature:	H.	Q	
353.014	266-111	15:73	ý -	١.							
16.531	15.734	30,00	.14						*	•	
					`						

	Impinge	er and Orsat Ana	lysis Data Sheet		
Base: HICKAM AFB			Date: 12 Av., 9	6	
Source: To -4			Time: 16-00		
•		IMPINCED	ANALYSIS		
I. ITEM			INITIAL VOLUME	VOLUME	WATER
11 (-14)			1	(mľ	
		(ml)	(ml)	(1111	<u></u>
IMPINGER 1 (H₂0)		215	100	115	
IMPINGER 2 (H ₂ O)	Standard Tip	41	100	-19	
IMPINGER 3 (H₂0)		0	0	6	
IMPINGER 4 (Silica	Gel)	206.5	200 gm	6,5	
		Total Volume of	Water Collected	109.5	
[].		MIGHTY	ORSAT		
Scratch Space: 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7-78 7-73 17-9 17-5	7.333 17.8 178			
3.212+3.7/2+	27.70%	3,108+3,480	0+22.986 3.212	+3.36+23.	016
CO ₂ = Reading A; O ₂ = Reading B-					
DMW = 0.440(%CO2) + 0.320(%C	02) + 0.280(%CO + %N	12)			
ITEM	ANALYSIS 1	ANALYSIS 2	ANALYSIS 3	AVERAGE	COMMENT
Reading A	7.3	7.0	7.3		
Reading B	18.9	17.9	17.8		
Reading C					
VOL% CO₂	7.3	7.0	7.3	7 0	
VOL% O ₂	11.6	10.9	10.5	7.2 11	
VOL% CO	-	-	-	<u> </u>	
VOL% N ₂	81.1	82.1	82.2		
Dry Molecular Weight	29.632	29,584	29,588	29,66,3	
Fuel Factor: $F_0 = (20.9 - \%)$			_	as): 1.600 - 1.836	3
Operator:	Cyle blasch		Signature:	KIMI	

16.154 18.681 35.435

264 Ibs

					g	pling Data S	heet	•			
	12 ms		Nozzle Diameter:	neter:	0, 747 in	in Pre Pitot Check:	eck: /es	L	S	Schematic of Stack	ठ्
	HICKAM	<	Pitot Coefficient,	ient, Cp.:	0,84	Post Pitot Check:	` [
Source ID:	TYPE "0"			ٺ	1.003	Pre Train Check:	leck:	(at 15			
Run Number	Ь :		Meter Box	νн@:	1,763	Post Train Check:	heck:	(at "Hg)			
Station Pressure:	:	30.02 "Hg	"Hg Meter Box #:	:: :	4		Assumptions				
Static Pressure:			"H ₂ O Probe #:	9	£ 1 9	%H ₂ O: //	S MWo:	30.0			
Fraverse	Sampling	Dry Gas	Gas Mete	Gas Meter Temp, T _m	Stack	Velocity	Orifice Diff	Probe	Sample	Impinger	Vacuum
Point	Time	. Meter Vol	u	Out	Temp, Ts	Head, ∆p	Press, AH	Temp	Box Temp	Outlet Temp	Pressure
Number	(min)	(ft³)	(°F)	(°F)	(°F)	("H ₂ O)	("H ₂ O)	· (°F)	(°F) ·	(°F)	("Hg)
		345.702								4	
7	Z. Smin		63	92	250	100	400	850	750	149	Ś
જ	1		8	92	48 0	10.	6.97	250	357	6,5	ک
h	"		93	83	680	10.	1.40	£SE	Scr.	6,5	3
4	11		43	26	BOS	5/00	60%	252	<u> عرثم</u>	09	35
لہ	1		55.	76,	8 50	2000	1.85	95€	150	09	40
9	1		96	83	870	10.	1.30	<i>382</i>	HHE	85	3.0
7	. 1/		96	73	830	10:	1.15	255	745	25	35
P	//		26	93	980	10,	1111	359	250	65	35
6	11		26	50	1030	101	80%	255	250	25	75.55
70	1		28	193	1060	100	50%	3.6 <u>0</u>	150	ھی	60%
11	//		27	23	1130	101	1.01	2 SE	346	45	40
?	į	36%388	87	23	1144	101	1,00	353	مكح	5.5	4.0
		364573								•	
7	J. Comis		18	8	046	10.	927	840	120	50	5.0
z	ì		Š	6	833	10.	1.24	3HB	Sys	50	2,5
7-	1/		23	9	970	10-	1.11	250	84C	22/	5%
*	"		S. C.	Ó	985	70.	610	250	252	محاك	5.0
ل	7		S.	b	3/0/	101	ارديق	25%	2%5	८अ	5:0
ھ	1		24	ģ	2027	10.	20%	253	25à	55	5:0
7	~		28	8	1072	,0,	1:04	2556	555	کنک	550
q	`		B	ò	86.11	101	0.96	255	25%	5.8	5.0
2	1		ģ	92	13 95	100	0.8	253	755	25	2,0
/0	11		8	88	1326	10:	0.89	25%	व्हर्	2.5	5.0
11	1/		98	92	1340	101	0.89	255	1,500	85	500
Ø,	1	381.377	36	% %	1355	10,	200	558	253	25	20
		1.6	1 E 27.4			1,00	A 1.0 A 1.1 =	10,		1	
I otal Gas Vol	.	19.414	- mı fav	2	Avg Is =	/4/	Avg an -	(10)	Avg (Fg1s)	= 5. d/S.	
Nov 95 36 75 80 Nov 95 5 75 75 5	אימי ל	プラドラント スペック Meter Box Operator:	c Operator:	Ores	Owner			Signature:	de	J	
18.60	4 16,75	lg.							\	,	